The Journal of Bioscience and Bioengineering (JBB) is an international journal devoted to the rapid publication of papers describing original research in the field of biotechnology. JBB encourages and publishes new concepts in technology/methodology that significantly advance the understanding of bioscience and bioengineering and contribute to the development of chemical, pharmaceutical, medical, food, and agricultural industries. The Editorial Committee makes its best efforts to provide expeditious, rigorous and fair peer-review, ensuring the high quality of articles published in JBB.

JBB is published monthly (2 vols. in 12 issues) by the Society for Biotechnology, Japan and distributed outside Japan by Elsevier. Online version is available in ScienceDirect. The journal was first published in 1923, originally being named Jyozogaku Zasshi (in Japanese) and then renamed Hakkokogaku Zasshi (in Japanese) (1944), Journal of Fermentation Technology (1973), and Journal of Fermentation and Bioengineering (1989). It was given the current name in 1999. JBB has established itself as one of the most influential biotechnology journals and is now highly appreciated by scientists throughout the world.

JBB is abstracted/indexed in BIOSIS, Chemical Abstracts, Current Contents, EMBASE/Excerpta Medica, Elsevier BIOBASE/Current Awareness in Biological Sciences, ISI Biotechnology Citation Index, and MEDLINE/PubMed.

Print ISSN 1389-1723
Online ISSN 1347-4421
CODEN: JBBIF6

Vol. 131 Cover Illustration

Eukaryotes are an important component of activated sludge and responsible for biological wastewater treatment. The treatment performance depends on the spatial distribution and resulting activity of the sludge microorganisms. However, the mechanism underlying the microbial assemblage formation is still unclear. Tomohiro Inaba and Tomoyuki Hori in the National Institute of Advanced Industrial Science and Technology (AIST) investigate the structure and function of microbial assemblage by confocal reflection microscopy and molecular ecological tools. This image shows a three-dimensional, high-resolution structure of an activated sludge portion composed mainly of ciliate-like eukaryotes. This non-destructive visualization contributes to a better understanding of sociomicrobiology in natural and engineered environments.

This image was taken by Tomohiro Inaba in Environmental Ecophysiological Research Group, Environmental Management Research Institute, AIST (https://unit.aist.go.jp/env-mri/121env-eco/ja/index.html) (Copyright@2021 The Society for Biotechnology, Japan).

⇒Back to Cover Archive Top