体を守る免疫

私たちには病気の原因となる微生物（病原体）からの働きかけに対抗する仕組みがあり、これを「免疫」と呼ぶ。

免疫の働きを説明できる身近な例としては予防接種がある。病気の原因となる微生物をもとにして製造したワクチンを接種することによってその病気に対する免疫機構を活性化しておき、実際の微生物の感染に備えることができる。

この現象は専門的には免疫記憶と呼ばれ、一度罹ると二度は罹らない病気があることから古くから知られる現象である。

では免疫機構は、病気の原因となる膨大な種類の微生物に、どのように対応しているのだろうか。

一つは、病原体の成分に共通に見られる構造を、複数の種類のパターン認識受容体で認識する。主に免疫細胞が感染初期にこの受容体を介して病原体を認識して防御反応を開始する。

一方、B細胞がつくる抗体は、異なる標的を認識するものが1億種類以上用意されている。この異なった多様性は、抗体遺伝子が完成品ではなく品として用意され、その部品の組み合わせや結合部位の多様性から生じる。多様な抗体群の中から標的に特異的なものが選ばれ、効率的に病原体を除去する。

病原体に致命傷を与える免疫機構は、私たち自身の体を攻撃しないように主に主要組織適合遺伝子複合体（MHC）を用いて自己と非自己を区別する。個々の人が持っているMHCの型は異なることから、特に腫瘍移植のときには、MHCの型がマッチングするかどうかが重要となる。

一方、免疫機構が本来寄るない物質に反応してしまう花粉症、ぜんそく、アトピー性皮膚炎などアレルギー反応を起こし、自己に反応してしまうと関節リウマチや1型糖尿病などの自己免疫疾患を起こす。さらに、免疫はもとよりの射である。

（岡山大学准教授 金山直樹）
協力：日本生物工学会

次回は10月15日に掲載