## Fuji Sankei Business 1.

6 15 FX

2011(平成23)年

企 画 特 集

## 進むバイオエタノール燃料電池の開発

バイオマスの有する資源供給の持続性は、エネルギー問題に本質的な解決を与える。バイオマス由来の糖質を用いたバイオエタノール生産も始まったが、発酵エタノールの濃度は10%程度と低い。濃縮や蒸留などによって最終的なエネルギーコストに影響を与え、実用化のハードルの一つとなっている。

大阪大学大学院工学研究科の 民谷栄一教授らは、バイオマス から生産された水素、エタノー ル、単糖類からの直接電極反応 と酸素還元反応を組み合わせた 燃料電池を開発している。

燃料電池は燃料となる分子からプロトンを引き抜き、空気中の酸素と反応させ水へと変換するもので、環境負荷のない優れたエネルギー生産システムである。燃焼も不要で室温で作動する。エタノール電池は2~5%の低い濃度でも電気出力が得られる。1 \*ロ7\*2程度で家庭でも利用可能な試作も始まっている。

## エタノール酸化促進に成功

民谷らは、燃料電池に使われ る電極にナノ領域の反応場に新 たなナノ構造を与えることで、 エタノールの酸化を促進することに成功した。具体的には、電 極上にカーボンナノチューブと 導電性ポリマーであるポリアニ リンとポリピロールを形成さ せ、電極反応の触媒となる白金 ナノ粒子をこれらに少量担持さ せることで、エタノール酸化特 性の向上に成功している。

## 導電性ポリマーに着目

従来のエタノール電池は、白 金電極に他の金属酸化物や高価 な合金も必要とし、製造コスト



バイオエタノール電池

上の問題もあった。今回はこう した金属ではなく、有機分子で ある導電性ポリマーに着目した 点が特に新しい。これらの成果 については、英王室化学会のマ テリアル関係の専門誌にも発表 された(2011年3月)。

さらに、民谷教授らは、気体 透過性の高い高分子素材ででき



た膜を介して発酵液を循環する だけで、エタノールが抽出でき ることも明らかにした。取り出 されたエタノールは、直接エタ ノール燃料電池への移送し、発 電が可能である。

このように発酵生産と発電が 同時に行えるシステムの開発も 提案している。

編集協力:日本生物工学会 www.sbj.or.jp

次回は7月20日に掲載