〔生物工学会誌 第93巻 第1号 24-31. 2015〕

光合成細菌変異株を用いた5-アミノレブリン酸生産に おける副産物の生成と培養温度の制御による 5-アミノレブリン酸の大量生産

田中 享¹*・西川 誠司¹・渡辺圭太郎¹・田中 徹²・新川 英典³・佐々木 健³

¹コスモ石油(株)事業開発ビジネスユニット ALA事業部 ALA開発グループ ²SBIファーマ(株),³広島国際学院大学大学院工学研究科物質工学

(2014年8月29日受付 2014年11月6日受理)

Production of by-products during 5-aminolevulinic acid (ALA) production by a mutant of photosynthetic bacteria (*Rhodobacter sphaeroides* strain CR-720) and industrial ALA production under control of temperature

Toru Tanaka^{1*}, Seiji Nishikawa¹, Keitaro Watanabe¹, Tohru Tanaka², Shinkawa Hidenori³, and Ken Sasaki³ (*Cosmo Oil Co. Ltd., Hamamatsucyo Bldg., 1-1, Shibaura, Minato-ku, Tokyo, 105-*8528¹; SBI Pharma Co. Ltd., Izumi Garden Tower 20F, 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6020²; Graduate School of Engineering, Hiroshima Kokusai Gakuin University, 6-20-1, Nakano, Aki-ku, Hiroshima 739-0321³) Seibutsu-kogaku **93**: 24–31, 2015.

A *Rhodobacter sphaeroides* mutant strain (CR-720) produced unknown amino acids in parallel with ALA production when cultured in medium containing 50 mM glucose, 60 mM glycine, 5 mM levulinic acid (LA), and 5 g/L yeast extract. The retention time from the amino acid analysis identified the unknown amino acid as 5-amino-4-hydroxyvaleric acid (AHVA). When CR-720 was cultured at 32°C, 41 mM ALA and 2.9 mM AHVA were obtained. In addition, HPLC analysis and optical resolution revealed the AHVA produced from strain CR-720 to be (*S*)-(+)-AHVA. When CR-720 was cultured in medium with an optimized temperature of 28°C, 44 mM ALA and 1.1 mM AHVA were produced and cell mass was maintained at $OD_{660} > 10$. Furthermore, medium optimization for industrial production was carried out. Finally, CR-720 produced 72 mM ALA with a high productivity rate (1.4–1.5 mM/h) and obtained 1.9 mM AHVA at an optimal temperature (28°C) when dissolved oxygen was at 0.5 mg/L, which was possible by controlling agitation in a 5-kL jar fermenter.

[Key words: 5-aminolevulinic acid, Rhodobacter sphaeroides, mutant, AHVA, temperature]

緒 論

5-アミノレブリン酸(ALA)は、ポルフィリン、ヘム、 ビタミンB₁₂など、ポルフィリン誘導体生合成における 最初の中間体として知られ、植物、動物、ヒトに広く分 布している。チトクロムやヘモグロビンもすべてALA を経て合成され、すべて生理的にも重要な物質である。 ALA生合成は、グリシンとスクシニル-CoAからALA 合成酵素を経て生成される、いわゆるShemin経路(C-4 経路)と、グルタミン酸から生成されるC-5経路で主に 行われる¹⁾. ALAは、ALA脱水酵素(ALAD)により 2分子が脱水縮合され、ピロール化合物である(PBG) を生成する. 1950年代に精力的に行われたポルフィリ ン誘導体生合成研究を通じて、細菌、動物、植物におい てその最終産物であるポルフィリン誘導体の存在量に比べて、遊離のALAやPBGの存在量がきわめて少量であることが指摘され²⁾、多くの場合ALA合成がポルフィリン誘導体生合成における律速段階であることが知られている.

1984年, RebeizらによってALAは低毒性除草剤とし て応用できることが報告された³⁾. ALAは毒性がなく 分解性も優れていて,植物に対してさまざまなストレス 条件下においての成長促進効果が報告されており,農業 分野での用途開発が進んでいる⁴⁻¹⁰⁾.一方,ALAはが ん治療薬,腫瘍診断薬として医療用途での開発が注目さ れている¹⁾.最近では,ALAとFe²⁺を用いたヒトによ る糖尿病予防に関する臨床試験結果¹¹⁾,ならびにALA とFe²⁺を用いた抗マラリア薬への可能性が報告されて おり医療分野での用途開発が進展している¹²⁾.

ALAの生産については化学合成法が報告されている. しかし,化学合成法は収率が悪く,一部でしか実用化は されていない¹⁾. 1970~1985年までの微生物によるALA 生産研究では,光合成細菌,嫌気性菌,藻類などでALA 脱水酵素 (ALAD)の競争阻害剤であるレブリン酸 (LA) を培地に添加することでALA菌体外生産が認められてい るが,いずれもALA生産濃度は低かった.最近では *Rhodobacter sphaeroides, Bradyrhizobium japonica*お よび*Agrobacterium radiobactor*のALA合成酵素遺伝子 (*hemA*)を導入した*Escherichia coli*によるALA生産 に関する研究が行われており¹³⁻¹⁶,溶存酸素濃度の制御 を加えた培養条件下において,最大で72 mMの生産が 報告されている¹⁷⁾.

光合成細菌は、光従属栄養増殖ばかりでなく、好気暗 条件下でも呼吸により増殖できる. ALAの実用的大量 生産には好気暗条件がコスト的に優れているので、筆者 らは好気暗条件下でもALA生産が可能な菌の開発を進 めた. すでに報告した通り, R. sphaeroides IFO12203を 起源としてN-メチル-N-ニトロ-N"-ニトロソグアニジ ンを用いて繰り返し変異を行い、好気暗条件でもALA を生産可能な第5次変異株 (CR-520) および第6次変 異株 (CR-606) を取得した¹⁸⁾. CR-520およびCR-606 のALA生産濃度を増大させるためには通気および攪拌 速度の調節が特に効果的であった.通常の空気を通気速 度0.1-0.2 vvmで通気した培養条件下でのCR-606株の ALA生産濃度は、前駆体であるグリシン、ALADの競 争阻害剤であるLAおよび酵母エキスを添加後,18時間 で20 mMだった¹⁸⁾. さらなる高生産を考えての変異処 理により取得したCR-720株は、酸化還元電位(ORP) を指標とし-150から-100mVとなる酸素供給条件下に おいてグリシン, LA, グルコースおよび酵母エキスを 添加後,38時間培養後のALA生産濃度は52 mMだった¹⁹⁾.

*R. sphaeroides*を用いたALA生産における培養温度は, CR-520株およびCR-606株を用いて2L発酵槽により 30°Cで実施され¹⁸⁾, CR-720株では3L発酵槽により 32°Cで実施されている¹⁹⁾.しかしながら, CR-720株は, 生育の至適温度が32°Cである一方で, ALA生産におい ては27°C以上の培養温度では培養温度の上昇に伴って 未知の副産物の生成が増加する傾向が認められ, ALA 生産量も32°C以上の培養温度では減少する傾向が試験 管による実験で認められた.

本報では, R. sphaeroides変異株CR-720株によるALA 生産時における副産物の構造を決定し, 副産物の生成抑 制条件として培養温度を検討した. さらに, CR-720株 を用い実製造設備(5kL発酵槽)でのALA生産のさら なる増大を試みた.

実験方法

供試菌株と培地 R. sphaeroides CR-720株は, 筆者 らの実験室保有のものを使用した²⁰⁾. 菌体を生育させる 培地はグルコースおよび酵母エキスからなる TT2培地¹⁹⁾ およびTT3培地を使用した. 121°C, 20分, 高圧蒸気 減菌した後, 最終濃度が150 mMとなるよう別に減菌し た2 Mグルコース液を加えた. TT3培地の組成は, グ ルコースの最終濃度を250 mMとし, 工業用酵母エキス (オリエンタル酵母工業社, 東京)の最終濃度を8 g/L とした以外はすべてTT2培地の組成と同様とした. pH 調整は行わなかった.

菌株は, 試験管 (21 mmφ) では振幅幅5 cm で 250 rpm, 仕込量 10 mL, 300 mL 容バッフル付三角フラスコでは, 回転半径 35 mm で 120 rpm, 仕込量 30 mL, 2 L 容バッ フル付三角フラスコでは, 回転半径 35 mm で 140 rpm, 仕込量 200 mL でそれぞれ培養温度 32°C で培養を行い 生育させた.

発酵槽によるALA生産 3L発酵槽によるALA生 産試験の場合,種培養は、10 mLのTT2培地を含む 21 mmø試験管を用いて48時間行った.次いで、200 mL のTT2培地を含む2L容バッフルフラスコに対して試験 管による培養液を2% (v/v) 植菌し,好気暗条件下24 時間培養を行った.次に、1.8LのTT2培地を含む,溶 存酸素電極(TOA-DKK社,東京),酸化還元電位電極 およびpH電極(メトラー・トレド社,Swiss)を装着 した3L発酵槽MDL-300(丸菱バイオエンジ社,東京)に、 前培養液を2% (v/v)植菌した.培養は通気速度0.2 vvm、 攪拌速度180から400 rpm,温度は26から34°Cで行った. 5 kL発酵槽によるALA生産試験の場合,種培養は、 200 mLのTT2培地を含む2L容バッフル付三角フラス コを用いて24時間行った.次いで120LのTT2培地を 含む200L発酵槽にフラスコ培養液を1% (v/v) 植菌し, 通気速度0.02 vvm, 攪拌速度230 rpmで24~30時間, 前培養を行った.3 kLのTT3培地を含む,溶存酸素電極, pH電極 (メトラー・トレド社, Swiss) および温度計を 装着した5 kL発酵槽に前培養液全量を植菌した.培養 は培養温度28°C, 通気速度0.2 vvm, 攪拌速度60~ 105 rpmで行った.

5-アミノ-4-ヒドロキシ吉草酸(AHVA)の合成 Bielらの方法²¹⁾に従い、ALA、水素化ホウ素ナトリウ ムおよび炭酸水素ナトリウム(和光純薬工業社、大阪) を室温下で一晩混合したのち、イオン交換樹脂IR-120B (オルガノ社、東京)による精製を行い、TLCで発色が 見られた画分を採取し、エバポレーターにより濃縮、乾 固させ合成AHVAを得た. (*R*)-(-)-5-アミノ-4-ヒドロ キシ吉草酸((*R*)-(-)-AHVA)、および(*S*)-(+)-5-アミノ -4-ヒドロキシ吉草酸((*S*)-(+)-AHVA)は、Herdiesの 方法²²⁾に従って合成した.

AHVA 粗結晶の取得 発酵液をGranickらの方法²⁾ に従ってイオン交換樹脂IR-120Bによる精製を行い, ALA画分を取得した. ALA画分を1N水酸化ナトリウ ム水溶液によりpHを8.0に調整し一晩室温下で放置し た. さらにpHを8.0に調整したALA画分を塩酸を用い てpHを4.0に調整し、イオン交換樹脂を用いて精製を 行った. 取得したALA 画分をHerdies らの方法²²⁾に従っ て硫酸バリウム(和光純薬工業社)共存下で室温で攪拌 し、遠心分離により上清を取得した。ろ液をさらに1N 水酸化ナトリウム水溶液によりpHを8.0に調整し一晩 室温下で放置した後、塩酸を用いてpHを4.0に調整し、 再度イオン交換樹脂を用いて精製した. AHVAをTLC により確認しAHVA画分を得た. AHVA画分をメタノー ル(和光純薬工業社)を用いて結晶化し、AHVA粗結 晶を得た.

分析方法 培養液中のALA濃度は、エーリッヒ発 色法により分析を行った¹⁸⁾. 菌体濃度は分光光度計 UV1600(島津製作所社,京都)を用いて660 nmの濁 度によって分析した. 培養液中のAHVA, 5-アミノ吉 草酸(DAVA)は、高速液体クロマトグラフィーLC-10Aおよび蛍光検出器RF-10A(島津製作所社,京都) により、オルトフタルアルデヒドを用いたポストカラム -HPLC分析法²³⁾により移動相濃度勾配条件を改変した 方法によって分析した. 合成したAHVAは99.9% D重 水(メルク社,Germany)に溶解し、核磁気共鳴装置 JNM-α400(日本電子社,東京)を用いて分析し、核磁 気共鳴(¹H NMR)スペクトルを取得した. 純水に溶解 した(R)-(-)-AHVA, (S)-(+)-AHVA, AHVA粗結晶, および発酵液は, Agilent1100シリーズのHPLCおよび ダイオードアレイ検出器DAD(アジレントテクノロジー 社, USA) により,純水1Lに60%過塩素酸10mLを 加えてpHを1.0に調整した溶液を移動相とし,流速を 0.5 mL/min, CROWNPAK CR(+)カラム (ダイセル社, 大阪),カラム温度3°C,測定波長190~400 nmにて分 析した.

実験結果

発酵での未知物質検出 3L発酵槽を用いてCR-720 株を生育させ、24時間培養後に菌体濃度(OD₆₆₀)がお よそ10(約4g dry cell/L) に達し, 攪拌速度を350 rpm とし、グリシン、レブリン酸、酵母エキスおよびグルコー スを添加後に, 硫酸を用いてpHを6.3 ± 0.1に自動調整 しALAの生産を開始した. 生産開始後19時間後に 28 mM生産した. 生産速度は1.5 mM/hであった (Fig. 1). 一方で, 生産開始後19時間以降は生産速度が低下し, 生産開始後44時間後では41 mMの生産であった. 生産 開始からの生産速度は0.9 mM/hとなった.残存グリシ ン濃度を確認するため、経時的にHPLCによりアミノ 酸を分析したところ、生産開始後19時間以降のグリシ ンは2.5~17 mM残存していた. 一方, リテンション タイム約45分に未知ピークを検出し、そのピークエリ アは生産開始後、ALAの増加とともに増加していた (Fig. 1, u.k. 1). 生産開始から25時間経過以降, ALA

Fig. 1. Increase of an unknown peak detected by amino acid analysis associated with the production of ALA from strain CR-720 in 3-L jar fermenter containing TT2 medium at 32°C. Agitation and aeration were controlled out at 350 rpm and 0.2 vvm, and pH was controlled at 6.3 \pm 0.1 after addition of levulinic acid (LA), glycine, yeast extract and glucose. •, unknown peak area in amino acid analysis (u.k. 1); \bigcirc , ALA production; \blacktriangle , cell mass; \triangle , residual glycine; \clubsuit , LA addition (5 mM); \clubsuit , glycine addition (60 mM); \clubsuit , yeast extract addition (5 g/L); \clubsuit , glucose addition (50 mM). The values represent the averages and standard deviations of triplicate experiments.

生産速度は低下したが未知ピークu.k.1は増加し続け, 生産開始から44時間後のピークエリアは5.4 × 107と なった.一方でアミノ酸分析のクロマトグラム上のリテ ンションタイム約52分に、新たな未知ピークを観察し た(Fig. 2, u.k. 2). 未知ピークu.k. 2は, 培養開始時の 培地には検出されず、生産開始時のピークエリアは3.5 × 10⁶, 生産開始から20時間後に8.1 × 10⁶, 44時間後 には5.6 × 10⁶であった.

未知物質の分析・同定 発酵液中の未知ピークはア ミノ酸分析法で検出され、この分析法はイオン交換を利

Retention time (min)

Fig. 2. Amino acid chromatogram of culture medium of strain CR-720 44 h after addition of levulinic acid (5 mM) and glycine (60 mM). Glu, glutamic acid; Gly, glycine; LA, levulinic acid; ALA, 5-aminolevulinic acid; u.k. 1, unknown peak in amino acid analysis (retention time is 45 min.); GABA, γ -aminobutylic acid; u.k. 2, unknown peak in amino acid analysis (retention time is 52 min.); His, histidine.

5-aminolevulinic acid (ALA)

Fig. 3. Analogical structures of unknown peaks in the culture medium of strain CR-720. The chemical structure of 5-aminolevulinic acid (ALA), 5-amino-4-hydroxyvalelic acid (AHVA) and 5-aminovalellic acid (DAVA); *, asymmetric carbon in AHVA.

用した分離の上、オルトフタルアルデヒドによるアミノ 基の修飾反応の後、生成した誘導体を蛍光検出する原理 とすることから、ALAに構造が類似しているアミノ酸 の1種と考えられ、2種のアミノ酸(5-アミノ-4-ヒド ロキシ吉草酸 (AHVA), および5-アミノ-n-吉草酸 (DAVA)) について検討した (Fig. 3).

AHVA については、市販試薬が存在しないため、Biel らの方法²¹⁾に従い、ALAより合成した、合成した AHVA を¹H NMR 分析した結果,4位の炭素に結合する プロトン由来のカップリングが隣接する5位および3位 の炭素に結合するプロトン数からピーク数5になるとこ ろ, ピーク数7に分裂していた (Fig. 4d). この結果は, 4位の炭素に結合するプロトンと5位および3位の炭素に 結合する二つのプロトンとの磁気的関係は非等価にある ことを示しており、合成した AHVA はラセミ体であるこ とが明らかとなった.3位の炭素に結合する二つのプロ トンのピークはそれぞれ、 δ = 3.16 (dd, J = 16.2, 3.2 Hz, 1H, 3-CH₂), 2.91 (dd, J = 22.5, 9.4, 1H, 3-CH₂) であった(Fig. 4c). また, 化学シフトδ=2.23-2.41のピー クはピーク数10となっており、2位の炭素に結合する二 つのプロトンおよび隣接する3位のプロトンがすべて非 等価な関係として解析した結果, dubble dubble dublet のピークが重なり合っていると考えられ、2位の炭素に 結合するプロトン由来のピークであることが確認できた (Fig. 4b). 化学シフトδ = 1.66-1.87のピークはピーク 数13となっており同様に解析を行った結果,3位の炭素 に結合するプロトンに由来するピークであることを確認

Fig. 4. ¹H nuclear magnetic resonance (¹H NMR) spectrum of AHVA synthesized from ALA, sodium borohydride, and sodium hydrogen carbonate. AHVA was purified with ionexchange resin, followed by NMR spectrometric analysis in D_2O (400 MHz). (a) $\delta = 1.66 - 1.87$ (m, 2H, 3-CH₂); (b) 2.23-2.41 (m, 2H, 2-CH₂); (c) 2.88-3.18 (m, 2H, 5-CH₂); (d) 3.86 (ddd, J = 25.6, 12.8 and 4.3 Hz, 1H, 4-CH(OH)).

した(Fig. 4a). これらの結果から合成したAHVAは AHVAの構造を有していることを確認した.

合成したAHVAをアミノ酸分析法により分析した結 果,リテンションタイムが45分であったことから,発 酵液中で検出したu.k.1とリテンションタイムが一致 した.すなわち,u.k.1をAHVAと同定した.合成した AHVAを分析標準品として,ALA生産開始後44時間後 の培養液中のAHVAを定量した結果,2.88 ± 0.04 mM (*n*=2)であった.

一方, DAVAは, 試薬を入手, アミノ酸分析法により 分析した結果, リテンションタイムが52分であったこ とから発酵液中で検出したu.k. 2とリテンションタイム が一致し, u.k. 2をDAVAと同定した. 試薬のDAVAを 分析標準品として, ALA生産開始後44時間後の培養液 中のDAVAを定量した結果, 0.24 ± 0.06 mM (n=2) であった. 一方, 発酵液の精製および結晶化を行い取得 したAHVA粗結晶の比旋光度を測定した結果, $[\alpha]^{20}_{D}$ = +22.0 ± 0.0 (n=3) であった. また, Herdiesの方法²²⁾ に従って合成した(S)-(+)-AHVAおよび(R)-(-)-AHVA を標準品とし, 光学分割カラムを用いたHPLC法によ り発酵液から取得したAHVA粗結晶を分析した結果, (R)-(-)-AHVAは検出されなかった (data not shown). こ の結果からCR-720株が(S)-(+)-AHVAを特異的に生成 していることが明らかとなった.

CR-720株におけるAHVA生成の温度依存性

AHVAはALA生産時に増加する不純物として低減する 必要があったため、ALA生産力価を可能な限り維持し ながらAHVAの生成を低減する条件を検討した.培養 温度によりALA生産が変動する可能性があったことか ら、まず温度の影響について検討した.試験管を用いた ALA生産評価法¹⁸⁾により、温度勾配装置を用いてCR-720株のALA生産時の培養温度幅を24~35°Cとして、 AHVAの生産挙動について検討した.その結果、ALA 生産は26~32°Cの範囲で培養20時間後に約40 mMを 維持し、AHVAは28°C以上の培養温度で増加し、35°C では約4 mMまで生成することを確認した (Fig. 5).

ALA生産におけるCR-720株の培養温度条件の設定 CR-720株を培養温度26,28,30,32および34°Cで3L 発酵槽にて生育させ、23時間後の菌体濃度はそれぞれ OD₆₆₀ = 3.8,6.0,8.9,11,および9.9となった.培養 温度28,30および32°Cに設定した発酵槽の攪拌速度を 350 rpmに設定、グリシン、レブリン酸、酵母エキスお よびグルコースを添加したのち、硫酸を用いてpHを6.3 ± 0.1に調整し、ALAの生産を開始した.ALAの生産 開始後、pHを硫酸を用いて6.3 ± 0.1に自動調整した.

ALAの生産開始から19時間後のALA生産濃度は,

Fig. 5. Effects of cultivation temperature on AHVA and ALA production of strain CR-720 in 15 mm ϕ test tubes containing TT2 medium. 20 h after cultivation, glycine (120 mM), LA (5 mM), and yeast extract (2 g/L) were added. \bullet , AHVA; \bigcirc , ALA. The values represent the averages and standard deviations of duplicate experiments.

28, 30および32°C条件下でそれぞれ28, 26および 26 mMを示し, ALA生産速度は, 1.4~1.5 mM/hであっ た (Fig. 6A). 一方, ALAの生産開始から41時間後の ALA生産濃度はそれぞれ44, 38および40 mMであった. ALAの生産開始から44時間後までのALA生産速度は, それぞれ1.1, 0.9, および1.0 mM/hとなった. 生産開 始後41時間後のAHVA生成量は, 28, 30および32°C 条件下でそれぞれ1.1, 2.1および2.9 mMであった (Fig. 6B). 生産開始後41時間後の菌体濃度 (OD₆₆₀) は, 28, 30および32°C条件下でそれぞれ11, 10および6 であった (Fig. 6C).

5 kL発酵槽を用いた28°C条件下でのCR-720株の ALA生産濃度 現状のALA生産条件では、生産を開 始させる際に、グリシン、レブリン酸、酵母エキスおよ びグルコース4種のプレカーサーを添加する. このまま 工業プロセスに適用するには操作が煩雑になる上、コス トアップ要因となるためALA生産の培地を簡略化した. すなわち酵母エキス (5g/L), およびグルコース (50 mM) を, CR-720株を生育させる段階で培地に追 加することとし、従来のTT2培地からTT3培地に変更 した. これによりグリシンとレブリン酸の添加で、十分 ALA生産が行えることとなった. また,5kL発酵槽の 酸素供給条件は、通気速度0.02 vvm条件下で攪拌速度 により溶存酸素濃度(DO)を制御し、温度は28°Cで 制御した. ALA, AHVA生産および菌体濃度の経時分 析結果をFig.7に示す.

CR-720株は,通気速度0.2 vvm条件下で攪拌速度を 90~105 rpmに調節し,DOが0.5 mg/L以上残存する 条件で生育させ,菌体濃度(OD₆₆₀)が13に達した24

Fig. 6. Effects of temperature on AHVA and ALA production and cell mass of strain CR-720 in a 3-L jar fermenter with TT3 medium. Agitation and aeration were controlled at 350 rpm and 0.2 vvm, and pH was controlled at 6.3 \pm 0.1 after addition of LA, glycine, yeast extract and glucose. (A) ALA production, (B) AHVA production, and (C) cell mass. \bullet , 28°C; \bigcirc , 32°C; \triangle , 30°C; \clubsuit , LA addition (5 mM); \clubsuit , glycine addition (60 mM); \clubsuit , yeast extract addition (5 g/L); \clubsuit , glucose addition (50 mM). The values represent the averages and standard deviations of triplicate experiments.

時間後, 攪拌速度を90 rpmに低下させた後, グリシン およびレブリン酸を添加してpHを6.3 ± 0.1に調整し ALA生産を開始した. ALAの生産開始後はDOの上限 値が0.5 mg/Lとなるよう攪拌速度を調節した. 生産開 始から39時間までにグリシン(60 mM)を計3回添加し, このときのALA生産濃度は59 mMおよびAHVA生産 濃度は1.2 mMであった. また, 生産開始から39時間 までのALA生産速度はALA生産速度は1.5 mM/h, 菌 体濃度(OD₆₆₀)は21であった. さらに, グリシン(60 mM) を添加し培養を12時間継続したところ, ALA生産濃度 は72 mM, およびAHVA生産濃度は1.9 mMとなった. 生産開始から51時間までのALA生産速度は1.4 mM/h, 菌体濃度(OD₆₆₀)は23であった. グリシン消費量から のALA収率は約30%であった. 生産開始から32時間

Fig. 7. ALA production from strain CR-720 controlled dissolved oxygen under 0.5 mg/L by agitation in a 5-kL jar fermenter containing TT3 medium. For ALA production, agitation and aeration were carried out at 60–90 rpm and 0.2 vvm, and pH was controlled at 6.3 \pm 0.1 after addition of LA and glycine. \bigcirc , ALA production; \bigcirc , AHVA production; \bigstar , cell mass; \clubsuit , LA addition (5 mM); \clubsuit , glycine addition (60 mM). The values represent the averages and standard deviations of triplicate experiments.

後にDOが一時的に0.7 mg/Lを示したが, 攪拌速度の 調節によって生産を通じてDOは0.5 mg/L未満に調節 できた.

考察

今回, 5 kL発酵槽を用いCR-720株によって得たALA 生産濃度(72 mM)は、最近の報告、*Rhodopseudomonas palustrisのhemA*遺伝子を含んだ*E. coli*による39.3 mM¹³, *Salmonella arizonaのhemA*遺伝子を含んだ*E. coli*による 31.5 mM¹⁶と比較して1.8倍以上、ならびに*E.coli* Rosetta (DE3)/pET28a (+)-*hemA*による72 mM¹⁷と同等の結果 であった、CR-720株は遺伝子組換え体でないので、ALA 生産の安定性や実用性が高いと考えられる。

CR-720株による5kL発酵槽での培養結果よりグリシン消費量は210 mMとなり、グリシンからのALAの収率は34%であった、前回の報告¹⁹⁾と同等の結果となり、 遺伝子組換え*E. coli*でのグリシンからのALA収率54% と比較して低かった. CR-720株では3L発酵槽でグリ シンを合計180 mM添加した場合、ALA生産時にアン モニアが約100 mM蓄積していることを確認しており、 アンモニアなどの他の物質に代謝され、ALA生産に用 いられていないためと考えられる.

AHVAは, 光合成細菌 Rhodospirillum rubrum により ALAからの代謝産物としてShigesadaらにより初めて 報告された²⁴⁾. また, Erythrobacter 属の光合成細菌に おいてもALAからの代謝産物としてAHVAが報告され ている²⁵⁾. さらに*R. capsulatus*の菌体破砕抽出液を用 いてALAからAHVAが生成されることが報告されてお り, BielらによってALADの関与が考察されている²¹⁾. CR-720株はALADの競争阻害剤であるレブリン酸を添 加しない場合,添加した場合と比較して約3倍のAHVA が生成されることを3L発酵槽で確認しており、CR-720株においてもAHVAの生成がALADと関与してい ると考えられる. CR-720株ではCR-520株やCR-606 株と比較してALAD活性が約2倍になっており、AHVA の生成能は過去の変異株と比較して向上していたと考え られる.これまでの報告^{21,24,25)}では光合成細菌により生 成されるAHVAは鏡像異性体として特定されていな かったが、今回、筆者らはAHVAが光学異性体であり、 CR-720株が生産したAHVAは, (S)-(+)-AHVAである ことを新たに確認した.

*R. sphaeroides*を用いたALA生産時の温度条件につい ては、CR-520株およびCR-606株では2L発酵槽を用 いて30°Cで実施された報告¹⁸⁾があり、CR-520株、CR-606株およびCR-720株では32°C条件下で2L発酵槽あ るいは3L発酵槽で実施してきた¹⁹⁾.CR-720株を用いて、 試験管によるALA生産試験にてALA生産時の温度条件 を詳細に検討した結果、32°C条件下20時間後ではALA 生産濃度が30 mMのときにAHVA生成濃度が2.2 mM であったのに対して、28°C条件下ではALA生産濃度が 37 mMのときにAHVA生成濃度が0.81 mMを示し (Fig. 5)、ALA生産時の温度を28°Cに変更することで AHVAの生成を抑制可能なことを確認し、さらにALA 生産量を増大する可能性も見いだすことができた.

*R. sphaeroides*による好気暗条件下でのALA生産において通気速度および攪拌速度の調節が効果的であり¹⁸, CR-720株では通気速度0.2 vvm条件下でORPが-150から-100mVとなる攪拌速度の設定し、3L発酵槽において生産開始から38時間後に52mM生産したことを報告した¹⁹. ORPを指標にした生産制御についてはコエンザイムQ10での例がある²⁶. CR-720株は、好気暗条件下でグリシンとスクシニルCoAからALASを介してALAを生産する能力を有するが、ALASが酸素に感受性をもつこととスクシニルCoAを供給するために十分に酸素供給が必要である点を両立させることが重要であった.実生産規模の発酵槽でラボスケールの発酵槽と同等のALA生産濃度を実現するため、酸素供給条件のスケールアップ指標を定めることが課題であった. ORPが-150から-100 mVとなる攪拌速度を5 kL以上 の発酵槽で設定するためには、同規模での複数の試験が 必要となったためコストがかかる問題点があった.そこ で筆者らは、単位液量当たりの消費動力と k_{L} aによる検 討を行った結果、5 kL発酵槽以上の発酵槽へのスケール アップには、 $k_{L}a=24 h^{-1}$ を満たす酸素供給条件の設定で 小規模試験でのALA生産力価と比較して90%以上の ALA生産力価が得られることを確認した²⁷⁾.一方、 $k_{L}a$ およびALA生産濃度とAHVA生成量との関係を確認し たが、いずれも明確な相関関係は見られなかった.Fig. 5に示す通り培養温度28°CでのAHVA生成量に対し培 養温度の影響が $k_{L}a$ およびALA生産濃度による影響 より大きいと考えられる.

結果として、本報では5kL発酵槽を用いてALA生産 時の攪拌速度の調節によってDOを0.5 mg/L未満に保 つことで1.4~1.5 mM/hの生産速度を保ち、生産開始 から51時間後にこれまでの報告と同等のALA生産濃度 に相当する72 mMのALA生産が可能となった.また、 生産開始から26時間後にALA生産濃度が42 mMのと きにAHVA生成濃度は0.7 mM、生産開始から51時間 後に1.9 mMを示し、培養温度28°C条件下でAHVAの 生成を抑制できることを実生産規模の5 kL発酵槽でも 確認できた.

要 約

光合成細菌変異株R. sphaeroides CR-720株は, 前駆 体として50 mMグルコース, 60 mMグリシン, ALA 脱水酵素阻害剤として5mMレブリン酸および5g/L酵 母エキス存在下,3L発酵槽でALAを生産させたところ, ALA生産に伴って増加する未知のアミノ酸を検出した. 未知のアミノ酸は5-アミノ-4-ヒドロキシ吉草酸 (AHVA) と同定した. CR-720株は培養温度32°C条件 下でALAを41 mM生産したときAHVAを2.9 mM生産 した. 光学異性体分離カラムを用いた高速液体クロマト グラフィーにより、CR-720株は(S)-(+)-AHVAを特異 的に生産していることを確認した. 培養温度を検討した 結果, 28°CでALAを44 mM生産したとき, AHVA生 産量は1.1 mMであった. さらにALA生産の培地を改 良し、5kL発酵槽を用いて培養温度28°Cおよび通気速 度0.02 vvm一定条件下で攪拌速度を調節し溶存酸素濃 度を0.5 mg/L以下に制御した結果,最終的にCR-720株 によるAHVAの生成を1.9 mMに抑制でき、ALAが 72 mM生産され、生産速度として1.4から1.5 mM/hを 得た.

- 1) Sasaki, K., Watanabe, M., Tanaka, T., and Tanaka, T.: *App. Microbiol. Biotechnol.*, **58**, 23–29 (2002).
- Mauzarall, D. and Granick, S.: J. Biol. Chem., 219, 435–446 (1956).
- Rebiez, C. A., Montazer-Zouhoor, A., Hopen, H. J., and Wu, S. M.: *Enzyme Microb. Technol.*, 6, 390–396 (1984).
- 田中 徹, 岩井一弥, 渡辺圭太郎, 堀田康司:植物の 化学調節, 40, 22-29 (2005).
- 5) 渡辺圭太郎, 舩田茂行, 田中 徹, 竹内安智:植物化 学調節学会研究発表記録集, p. 59 (2008).
- 6) 舩田茂行,小堀寿浩,藤田峰斎,堂田正彦,渡辺圭太郎, 竹内安智:植物化学調節学会研究発表記録集, p. 60 (2008).
- 7) Awad, M. A.: Sci. Hortic., 118, 48-52 (2008).
- 渡辺圭太郎, 舩田茂行, 小堀寿浩, 笛木正一, 田中 徹, 竹内安智:植物化学調節学会発表記録集, p. 38 (2007).
- 8) 舩田茂行, 渡辺圭太郎, 田中 享, 田中 徹, 竹内安智: 植物化学調節学会研究発表記録集, p. 39 (2007).
- 岩井一弥, 倉持仁志, 竹内安智: 芝草研究, 35, 99–104 (2007).
- 11) Higashikawa, F., Noda, M., Awaya, T., Tanaka, T., and Sugiyama, M.: *Nutrition*, **29**, 1030–1036 (2013).
- 12) Komatsuya, K., Hata, M., Balogun, E. O., Hirosaka, K., Suzuki, S., Takahashi, K., Tanaka, T., Nakajima, M., Ogura, S., Sato, S., and Kita, K.: *J. Biochem.*, **154**, 501– 504 (2013)

- Choi, H.-P., Lee, Y.-M., Yun, C.-W., and Sung, H.-C.: J. Microbiol. Biotechnol., 18, 1136–1140 (2008).
- 14) Fu, W., Lin, J., and Cen, P.: Appl. Microbiol. Biotechnol., **75**, 777–782 (2007).
- Qin, G., Lin, J., Liu, X., and Cen, P.: J. Biosci. Bioeng., 102, 316–322 (2006).
- 16) Kang, Z., Wang, Y., Gu, P., Wang, Q., and Qi, Q.: *Metabol. Eng.*, 13, 492–498 (2011).
- 17) Yang, J., Zhu, L., Fu, W., Lin, Y., Lin, J., and Cen, P.: *Chinese J. Chem. Eng.*, **21**, 1291–1295 (2013).
- 18) Nishikawa, S., Watanabe, K., Tanaka, T., Miyachi, N., Hotta, Y., and Murooka, Y.: *J. Biosci. Bioeng.*, **87**, 798– 804 (1999).
- 19) 田中 享,西川誠司,渡辺圭太郎,田中 徹,佐々木健: 生物工学, 88,455-462 (2010).
- 20) 上山宏輝, 堀田康司, 田中 徹, 西川誠司, 佐々木健: 生物工学, 78, 48-55 (2000).
- 21) Biel, A. J., Canada, K., Huang, D., Indest, K., and Sullivan, K.: *J. Bacteriol.*, **184**, 1685–1692 (2002).
- 22) Herdies, C.: Synthesis, **3**, 232–233 (1986).
- 23) 安居嘉秀:島津評論, 47, 365-372 (1990).
- 24) Shigesada, K., Ebisuno, T., and Katsuki, H.: Biochem. Biophys. Res. Commun., 39, 135–141 (1970).
- 25) Shioi, Y., Doi, M., Tanabe, K., and Shinokawa, K.: Arch. Biochem. Biophys., 266, 478–485 (1988).
- 26) Sakato, K., Tanaka, H., Shibata, S., and Kuratsu, Y.: *Biotechnol. Appl. Biochem.*, 16, 19–28 (1992).
- 27) 舩田茂行,上田康信,田中 享,西川誠司:日本生物 工学会大会講演要旨集, p. 70 (2006).