厳しい環境で生き残った細胞にみられる遺伝子発現

間世田英明*・市瀬 裕樹・上手 麻希

はじめに

そもそも現存する生物は、ある程度の環境変化に応答・対応する能力を有し、それを発揮し、逞しくも環境変化に適応し生き残ってきた。その環境変化と適応の果てに生物は進化を遂げ、独自の特殊な能力を発揮・獲得・育成し、我々の想像を超えたような特異な環境状態でも生活できるような生物までもが誕生してきた。さまざまなバイオ産業では、このような能力を持つ生物やその機能を自然界から分離・育種し、さらに人為的な改良を加え(進化させ)、広く利用している。根本的に生物が特殊な能力を発揮する機構、獲得する機構、改良していく機構の詳細、すなわち、適応と進化のプロセスの機構を理解することができれば、緻密にデザインした育種法の確立やより効率的物質生産、さらなる広汎な利用も現実的に可能になると思われる。

特異状態とも思える環境に生物が適応し、生き残る能 力とは何か?その答えを求め、たとえば極限生物の探索 やその特徴的機能の解析が沢山なされてきた. 高温で生 きる好熱菌, 高pHで生きる好アルカリ菌, 低pHで生 きる好酸菌、高浸透圧で生育できる好塩菌、高圧で生き る好圧菌、放射線に対して低感受性の放射線耐性菌、有 機溶媒に対しても耐性を示す溶媒耐性菌、種々の抗菌剤 に対しても高い耐性を示す高度多剤耐性菌などの解析は その代表的なもので、結果、さまざまな特徴的な機構や 因子が見つかってきた. しかし. 見いだした機構や因子 の多くは、その直接的原因因子や機構であり、どのよう に耐性を獲得するのか(耐性化などの機構). そのプロ セスを明らかにしたものではない、そして、環境が急変 し、特異な状態、すなわち通常であればその種が死滅し てしまうであろう状態に(微) 生物が置かれた場合, 一 つの細胞・個体だけでも生き残らせるために (種を守る ために)どのような遺伝子や機構が働き、その環境に適 応し、進化するのかは、ほとんど明らかになっていない. その背景には、その種の集団からすれば、一般的でない 挙動・システム、あるいは、独自の遺伝子を発現する非 常にマイナーな細胞 (集団) の挙動を詳細に解析する必 要に迫られるため、分離・解析が非常に困難であったこ

とがあげられるであろう. それでも特異状態といった例外的な環境にどのように(微) 生物が適応し生き残るかを明らかにするためには、そのマイナー集団の遺伝子、タンパク質、あるいはシステムがどのように発現し働くのか(作られる?) を解析することは必須である.

最近では、次世代シークエンサーの発展と相まって、 ある特殊な環境下で微生物を培養し続けることにより, どのような遺伝子が変化して、新しい機能や特徴を有す る変異遺伝子・変異タンパク質が発現してきたのか、そ のシステムの解析も進んできている. そこには、進化つ まりは、変異による遺伝子の変化での環境への生物の適 応戦略の一端の理解が目標として掲げられているが、本 来急激な環境変化への適応の根本には、あらかじめ変異 した個体がたまたま生き残り進化してきたという考え方 と、変異なくして、偶発的な出来事(偶発的遺伝子の発 現)に対応し、生き残ってきたという二つの道筋が存在 する. この後者の理解には、特異状態に生物をさらした 時に起こる変異ではない、ほんの一部の個体で起きる遺 伝子の発現の"ゆらぎ"を理解する必要がある. そこで 本稿では、微生物が生育できない特異状態な環境、つま り栄養が極端に枯渇した場合や、高濃度(致死的濃度) の抗生物質下に置かれた場合での、遺伝子の変異に因ら ない生き残り戦略の一端を、最近の研究成果を取り上げ 紹介する.

特異状態で残っている細菌

細菌を一定以上の濃度の抗生物質に暴露すると、生育が止まり、いずれは死滅する.しかし、そんな状態であっても、逞しくも生き残る細菌が存在する(図1).耐性株(菌)である.そんな耐性株をしらべてみると、確かにその薬剤に対して耐性を獲得しており、次世代シークエンサーでゲノムの配列を決定するとターゲット遺伝子や調節遺伝子の変異による耐性因子の発現などを確認することができる(図2).耐性株とはまさにそのようなものであると考えられてきた.しかし、臨床現場では適切な抗生物質を投与しているにも関わらず、目的感染起因菌を制御できないことが多々あり、それら感染菌を分離解析しても、不思議なことに十分な耐性が認められない場

196 生物工学 第93巻

^{*}著者紹介 徳島大学大学院ソシオテクノサイエンス研究部(准教授) E-mail: maseda@bio.tokushima-u.ac.jp

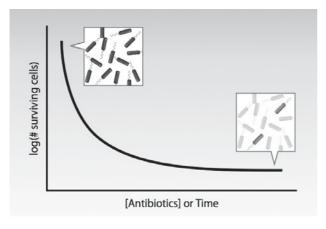


図1. 抗生物質濃度 or 暴露時間と残存菌数

合がある. 昔はbackmutantとして片づけられていたり. バイオフィルムなどを形成して十分に抗生物質が効果を 示さなくなっていたのだろうなど考えられていた. しか し, 近年になり本現象は、均一なゲノムを持つ生物であっ ても、遺伝子発現にゆらぎがあり、そのゆらぎが、耐性 遺伝子の発現に多様性を持たせ、抗生物質に暴露されて いても生き残っていることが示されてきている。このよ うな株をpersistersと呼んでいる. たとえば、結核菌に 有効な抗生物質であるイソニアジドに結核菌を暴露する とほとんどの菌は死滅する. イソニアジドはプロドラッ グであり、結核菌が有しているKatGによってNADHと のカップリングにより、活性化され、細胞壁構成成分で あるミコール酸の合成酵素を結果的に阻害することで. 結核菌を殺滅する. しかし、一部の株がpersistersとし てやはり生き残る. この近縁株である Mycobacterium smegmatisでも、まったく同様なメカニズムで殺滅と persistersの出現が起こるが、その機構を詳細に解析し たところ, 低頻度であるが, 遺伝子発現のゆらぎにより KatGを発現しない株が必ず出現し、それによりプロド ラッグの活性化が起きないために、殺滅されずに、生き 残ることが示された¹⁾. このような耐性株 (persisters) はゲノムの変異を伴わない耐性発現であるので、原因の 解明と証明は非常にむずかしいものであり、近年の技術 革新による蛍光物質を用いた一細胞の可視化技術によっ てなし得たものであった. このような persisters の出現 現象自体は、実は以前から、大腸菌などではトキシン-アンチトキシン機構として知られていた2). 結核菌の場 合は、抗生物質が高濃度に存在するといった特異状態で 認められる現象であるが、大腸菌のトキシン-アンチト キシンの現象は、いくつかの特異状態下に置かれたとき

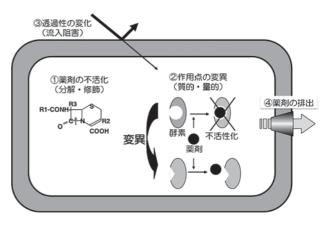


図2. 4つの耐性機構

図3. アミノ酸飢餓の(p)ppGppの生成

に起きる現象である。たとえば、栄養が極端に少ないという飢餓状態に大腸菌が置かれた場合にも、大腸菌のアイソジェニックな細胞集団中の一部の株で生き残りが認められる。大腸菌をアミノ酸を豊富に含む培地から、アミノ酸を含まない培地に移し替えた時、飢餓(緊縮)応答が起きることが知られている。アミノ酸飢餓により細胞内のアミノアシルtRNAの濃度が低下すると、アミノ酸が結合していないtRNAがリボソームのtA-サイトに結合してしまうという、菌にとっての異常な状態が起こる。そのtRNAをリボソームから引き出す際に、RelAタンパク質によりtPpGppが作り出され、その濃度が高まると同時に、リン酸を一つ除かれた緊縮応答シグナルtPpGppの細胞内濃度も高まる(図t3)3、t10,200。ppGppは、ストレス応答シグマファクターt38の制御下の遺伝子発現を

2015年 第4号 197

オペロン	タンパク	トキシン-ア ンチトキシン	アミノ酸
Ribosome-independent RNA interferases			
mazEmazF -	MazE	Antitoxin	82
	MazF	Toxin	111
chpBIchpBK -	ChpBI	Antitoxin	83
	ChpBK	Toxin	116
hicAhicB -	HicA	Toxin	58
	HicB	Antitoxin	145
prlFyhaV -	PrlF	Antitoxin	111
	YhaV	Toxin	154
mqsRmqsA -	MqsR	Toxin	98
	MqsA	Antitoxin	131
rnlArnlB -	RnlA	Toxin	357
	RnlB	Antitoxin	123
Ribosome-depe	ndent RNA int	erferases	
relBrelE -	RelB	Antitoxin	79
	RelE	Toxin	95
yefMyoeB -	YefM	Antitoxin	83
	YoeB	Toxin	84
yafNyafO -	YafN	Antitoxin	97
	YafO	Toxin	132
dinJyafQ -	DinJ	Antitoxin	86
	YafQ	Toxin	92
higBhigA -	HigB	Toxin	104
	HigA	Antitoxin	138
Inhibitor of ribo	osome subunit	association	
ratAyfjF -	RatA	Toxin	158
	VfjF	Antitoxin	96
Inhibitors of cel	ll division		
yeeUcbtA -	YeeU	Antitoxin	122
	CbtA	Toxin	124
yafWykfI –	YafW	Antitoxin	105
	YkfI	Toxin	113
yfjZypjF -	YfjZ	Antitoxin	105
	YpjF	Toxin	113
Inhibitor of pho	spholipid syn	thesis	
gnsAymcE -	GnsA	Toxin	57
	VmcE	Antitoxin	76
Unknown (involved with persistence)			
hipBhipA -	HipB	Antitoxin	88
	HipA	Toxin	440
Unknown			
yjhXyjhQ -	YjhX	Antitoxin	181
	YjhQ	Toxin	85
ydaSydaT -	YdaS	Toxin	98
	YdaT	Antitoxin	140

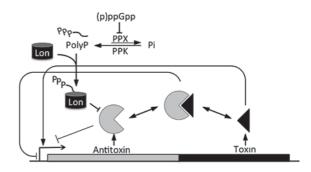


図4. トキシンーアンチトキシンのモデル図

促すだけでなく、直接RNAポリメラーゼに作用して転写活性を1/10程度以下に抑制し、mRNAの分解促進、それによる合成過程にあったペプチドの分解促進を引き起こし、結果、アミノ酸を細胞に供給するようになる、そして、これでも危機的状態が続く場合には、最終的には細胞集団の中でトキシン-アンチトキシン遺伝子が発現しているpersistersが生き残ることになる(ここでは、トキシンの意味するところは、菌を殺すことではなく、生育を弱めるあるいは、休眠させること).

大腸菌のゲノムの解析から、dinF-yafQ, relBrelE, mazEF, mqsRA, ccdAB, tisB-yisR-1 などの33個, 論 文によっては36個のトキシン-アンチトキシンの遺伝 子が見つけられている $(表1)^{2,4}$. その内の一つで解析の 進んでいる yefM-yoeBを例にあげると、YoeBトキシン は、グアニンとアデニン塩基の3'側を切断するリボヌ クレアーゼであり、1分子のYoeBに対してYefMが2分 子結合することで、その活性が抑制されていることがわ かっている. しかし、ppGppの細胞内の濃度が十分に 上昇している細胞では、PPXが抑制され、細胞内のポ リリン酸濃度が上昇する. そして、Lonプロテアーゼが 活性化され、アンチトキシン(YefM)を抑制する. そ の結果, トキシン (YoeB) が活性化され, yefM-yoeB オペロンの転写が誘導される. 続いて、YoeB (安定) とYefM(不安定)のタンパク質の安定性の違いから、 YoeBが活性化され、本オペロンの更なる活性化が導か れる(図4). しかし. これではすべての細胞でトキシン が活性化し、生育が止まった、あるいは非常に遅い persisters になってしまうことになるが、実は、ppGpp の細胞内濃度は、クローナルな細胞集団であっても、細 胞ごとに確率論的に大きなバラツキがあることがわかっ ている. そして、ppGppの濃度が非常に高くなってい るほんの少しの細胞だけが、生育が弱まることと引き替 えに (persisters になり) 生き残る⁵⁾. しかし, ひとたび

198 生物工学 第93巻

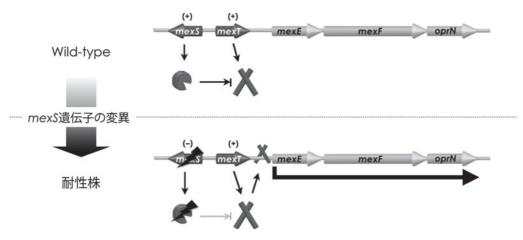


図5. 緑膿菌 MexEF-OprN の発現調節機構

栄養がリッチな環境に移されれば、おわかりのようにppGppの細胞内濃度は低下し、通常の増殖に戻っていく.このようにやはりゲノム配列が同じであっても、遺伝子の発現にはノイズ(ゆらぎ)が存在し、結果、アイソジェニックな細胞集団に含まれる多様な表現型をしめすマイナーな細胞集団が、急激な環境変化に適応し生き残ることがわかってきた.

サイレントな耐性遺伝子の発現による耐性

緑膿菌の多剤耐性因子であるMexEF-OprN薬剤排出ポンプもまた、その負の調節遺伝子(mexS)の発現のゆらぎによって、集団の中の一部の細胞でのみ発現が促され、緑膿菌を高度に多剤耐性化させることがわかってきた.

緑膿菌は環境常在菌であり、かつ抗生物質に暴露され ると容易に多剤耐性化することから、臨床現場でもっと も問題となる感染症の原因菌の一つである. 筆者らは. 緑膿菌の多剤耐性の発現機構について詳細に調べている 際に、通常サイレントな mexEF-oprNオペロンが一部の 株で一過的に発現し、多剤耐性を示すことを見いだした. MexEF-OprNは、RND(Resistance-Nodulation-Cell division) 型の薬剤排出ポンプであり、元来野生株では まったく発現が認められていなかった. このMexEF-OprNタンパク質の発現は、負の調節遺伝子mexSによ り完全に抑制されており、MexSの変異によりはじめて、 mexEF-oprNの転写が誘導され、結果、抗生物質である クロラムフェニコールやさまざまなキノロン剤に一度に 耐性になる(図5)^{5,6)}. 実際に長期感染してしまっている 患者から分離されてくる緑膿菌において. しばしば mexSに変異が導入され、MexEF-OprN薬剤排出ポンプ

が過剰発現され、抗生物質が効果を示さなくなっている 株が分離されることが報告されている. 筆者らはこのよ うな本来サイレントな遺伝子orオペロンというものが、 薬剤耐性に寄与しているのではないかという単純疑問か ら、検討を加えて、実は、野生株で発現していないと考 えられていた mexEF-oprNオペロンが緑膿菌の抗生物質 存在下での生き残りに大きく寄与していることを突き止 めた、緑膿菌の野生株を高濃度のクロラムフェニコール を含む固形培地に塗布すると、培養3日目にプレートに 多くのコロニー $(1/10^6$ 程度の割合)が観察される。こ のコロニーの薬剤感受性を測定してみるとクロラムフェ ニコールのみならず、多くのキノロン剤にも耐性を示す ことがわかった. 当然あらかじめ mexEF-oprNの遺伝子 を欠失しておいた株では、薬剤感受性は元株とまったく 変わらないにもかかわらず、同実験を行ってもコロニー の出現は認められない. つまり, このプレート上での耐 性株の出現が mexEF-oprN遺伝子に依存していることが わかる. その後の解析から出現したコロニーでは, mexEF-oprNが転写・翻訳されていることがわかった. しかし、mexEF-oprNの発現を負に制御しているmexS には塩基配列上ではまったく変異は認められなかった. 特筆すべき点は、このコロニーを薬剤を含まない培地で 培養するとすぐに耐性が消失し、野生株レベルに完全に 戻るということである. つまり、この現象は変異による 耐性獲得ではないことを裏づけている. また, 再度感受 性に戻った上述の株を再び高濃度のクロラムフェニコー ルを含む培地に塗布すると3日後に同効率でmexSに変 異のない耐性株が出現する. さらに、mexSの転写量は、 親株に比べ著しく低いものであり、抗体を用いた解析で も MexS 自体の発現も低くなっていた. これらのことか

2015年 第4号 199

ら、3日目に出現してきたコロニーは、mexS遺伝子の 転写のノイズ (ゆらぎ) により、mexEF-oprNの転写抑 制が解除され、耐性を示すようになったことが明確に なった. このような耐性株は. 臨床上非常に大きな問題 となるものと考えられる. それは、実際に患者から菌を 分離し、その株の薬剤感受性から効果のある抗生物質を 仮に選択したとしても, 分離した時点でゆらぎによる一 過的耐性は消失してしまうため、実際には、投与しても 効かない薬剤を選択してしまう可能性が高まるからであ る. 効果の期待されない抗生物質の使用は、結果的に長 期感染の原因となる恐れがある. また、ゲノムの解析で 緑膿菌は、12個ものRND型薬剤排出ポンプをゲノムに 有していることが示されているが、恒常的に発現してい るのはMexAB-OprM一つのみである. このことから, 残りのポンプが一過的に(一部の) 緑膿菌で発現し、実 は抗生物質の耐性に寄与している可能性が十分考えられ るため、どのポンプがどのような時に一過的に発現する のか?詳細に検討を加えていく必要があろう.

次世代シークエンスの発達の速度を鑑みると、おそらくゲノム配列から感染菌の諸性質を推察し、制御することが試みられていくことは必至である思われる.しかし、persistersのような株の遺伝子発現は、配列情報からで

はまだまだ予測が難しく、その機構の解明と制御は今後 大きな懸案事項となると思われ、感染制御を考える上で も、生物の環境適応を考える上でも、さまざまな菌体の さまざまな遺伝子の発現のゆらぎを調査・解析していく 必要となるであろう。

特異状態における微生物学という特集であることから、微生物の特異状態での遺伝子のゆらぎについて、記載してきた。実はこのpersistersの解析は、感染症の理解と制御に留まるだけでなく、ガン細胞の抗がん剤耐性とも事象を同じにするところが多く、疾病予防や抗がん剤の開発においてもpersistersの理解、遺伝子の発現のゆらぎは非常に重要になっていくものと思われる。サイレントな遺伝子の役割について、もう一度見直す時期にきているのではないだろうか。

文 献

- 1) Wakamoto, Y. et al.: Science., 339, 91 (2013).
- 2) Yamaguchi, Y. and Inouye, M.: Nat. Rev., 9, 799 (2011).
- 3) Dalebroux, Z. D. and Swanson, M. S.: *Nat. Rev.*, **10**, 203 (2012).
- 4) Kint, C. I. et al.: Trends. Microbiol., 20, 577 (2012).
- 5) Maisonneuve, E. et al.: Cell., 157, 1140 (2013).
- 6) Uwate, M. et al.: Microbiol. Immunol., 57, 263 (2013).

200 生物工学 第93巻