生体分子の分離技術を利用したカーボンナノチューブの分離

はじめに

単層カーボンナノチューブ (CNT) は直径やらせん 度の違いによって多様な構造をとる(図1).たとえば、 直径0.7~1.3 nmの分布を持つCNTは約70種類, 鏡像 体も考慮すると約120種類の異なる構造を取りうる. CNTは構造の違いによって異なる電気特性(金属型と 半導体型)や光学特性を示すため、これらの特性を利用 するためには、多様な構造の中から特定の構造のCNT を選択的に得る必要がある。1993年の飯島による単層 CNTの発見¹⁾から10年弱が経過した2002年に、界面活 性剤存在下での超音波照射と超遠心分離によるCNTの 孤立分散液(CNT一本一本が孤立に分散した液)の調 製法がSmalleyらによって報告された²⁾. この報告以降, 多様な構造を含むCNT分散液の中から特定の構造の CNTを分離する本格的な研究が進み始めた.そして. 2006年のHersamらによる、密度勾配超遠心法による CNTの分離の報告が大きな転換期となり、後を追って さまざまな優れた分離法が報告されるようになった. 直 径分離,金属型・半導体型分離,単一構造分離,さらに 現在では、右巻きと左巻き(エナンチオマー)も分離さ れた真に単一構造のCNTが得られるまでになっている. 興味深い点は、密度勾配超遠心分離法、アガロースゲル 電気泳動法、カラムクロマトグラフィー法、水性二相分

図1. CNTの構造は (n,m) の2つの自然数で規定される. 図 中のグラフェンシート (六角形が並んだシート)を, ©で示 す (0,0) と●が重なるように丸めた構造は金属型CNTに, © と○を重ねると半導体型CNTになる. 同じ (n,m) でもシート を丸める方向が表か裏かで鏡像関係となる. 点線で囲った領 域に含まれるものは直径0.7~1.3 nmのCNT.

田中 丈士

離法といった,生体分子の分離に汎用されている手法が CNTの分離に非常に有効であることである.以下に, これらCNTの分離法の詳細について説明する.

密度勾配超遠心分離

密度勾配超遠心分離法はバイオテクノロジー分野において,染色体DNAとプラスミドDNA,細胞内小器官, 細胞などの分離分画に用いられる手法である.密度を連続的,あるいは段階的に変化させた媒体中で遠心分離を 行うことにより,分析物は対応する密度の領域に層をな して濃縮され,分離される.2006年にHersamらはこの 密度勾配超遠心分離法をCNTの分離に適用し,CNTの 直径に応じた分離(直径分離)あるいは金属型と半導体 型というCNTの電気的性質に応じた分離(金属型・半 導体型分離)(図2)に成功した³.

コール酸ナトリウム (SC) を分散剤に用いて密度勾 配超遠心を行うと, 直径の違いで分離された.一方, 分 散剤にSCとドデシル硫酸ナトリウム (SDS)の混合物 を用いて密度勾配超遠心を行うと, 鮮やかなオレンジ色 を呈する半導体型CNTが上層に, 緑色を呈する金属型 CNTが下層に分離された (金属型と半導体型では可視光 領域での光吸収波長帯が互いに異なるため色が異なる. また, CNTが太くなるにつれて吸収波長が長波長側に シフトするため, 直径によっても色が異なる). CNTは 炭素からなる黒い「すす」であるが, 高純度に分離精製 すると鮮やかな色彩を放つのを目にして, 多くの研究者 は衝撃を受けた. 分離原理については, 金属型と半導体 型のCNTで密度が異なるわけではなく, それぞれの CNTに吸着する界面活性剤の組成が異なり, 界面活性

図2. 密度勾配超遠心による金属型・半導体型CNTの分離

著者紹介 国立研究開発法人産業技術総合研究所ナノ材料研究部門(上級主任研究員) E-mail: tanaka-t@aist.go.jp

剤の「ころも」を含めた密度が金属型と半導体型のCNT で異なる結果,分離されると考えられる.実際,混合す る界面活性剤の組成を変化させると,遠心管中の半導体 型と金属型のCNTの位置が上下逆転することもあり, これはCNT自体の密度が分離の主因ではないことを示 している.Weismanらは,密度勾配を精密に調整する ことにより,単一構造の半導体型CNTの分離,さらには, 右巻きと左巻きのCNTの光学分割(エナンチオマー分 離)にも成功した⁴⁾.エナンチオマー分離は,光学活性 な界面活性剤であるSCの右巻き・左巻きCNTに対する 認識能力の違いによる結果であると考えられる.

アガロースゲル電気泳動

アガロースゲル電気泳動は、生物系の学部・学科であ れば学生実験でもよく行われる、おなじみのDNAの分 離法である.ゲルの網目が分子ふるいとなり、DNAを 長さで分離するものである.筆者らのグループは、先の 密度勾配超遠心法による分離の成功に触発され、アガ ロースゲル電気泳動を用いたCNTの分離を試みた⁵⁾. ただし、DNAの分離で用いられるサブマリン型の泳動 装置ではなく、ガラス管中でアガロースゲルを調製し、 垂直方向に電気泳動を行う装置を用いた(図3).

SDSで分散したCNTをアガロース電気泳動に供する と、電気泳動の先端と後端で色味に違いが認められ、金 属型CNTがゲル先端に、半導体型CNTがゲル後端に分 離されることが判明した(図3a).さらに条件検討を重 ねた結果、あらかじめCNT分散液とアガロースを混合 し、ゲル中に固めた状態のもの(CNT含有ゲル)を電気 泳動に供すると、半導体型CNTは始めの位置から移動 せず、金属型CNTのみが泳動した(図3b).30分程度の 短時間で分離され、高価な装置も必要としない点が本法 の優れた点である.当初、金属型と半導体型という電気 的性質の異なるものが分離されるため、電場が重要な役 割を果たすと考えられたが、実際には電場は必要ではな

図3. アガロースゲル電気泳動による金属型・半導体型CNT の分離. 試料にCNT分散液 (a), CNT含有ゲル (b) を使用.

いことが判明した.たとえば、アガロースゲル電気泳動 後にゲルからDNAを回収する簡易的な手法として、ゲ ルを凍結・融解後に圧搾する方法があるが、これを CNT含有ゲルに対して行うと、半導体型CNTはゲル固 形中に残り、金属型CNTのみが搾り出された⁶.この 結果は、分離に電場が必要ないことを示している.

カラムクロマトグラフィー

筆者らのグループはアガロースゲル電気泳動の成果を もとに、カラムクロマトグラフィーによるCNTの分離 技術の開発を行った.生化学分野では、タンパク質のカ ラム精製に、アガロースからなるSepharoseゲルやアガ ロースと同様に多糖であるデキストランをベースにした Sephacrylゲルが広く用いられている.これらのゲルは、 元々はサイズ排除クロマトグラフィー用の担体として開 発されたものであるが、CNTの分離にも適用可能であ る(図4).ただし、CNTの分離においては、吸着クロ マトグラフィーの担体として機能する.

Sepharose ゲルを充填したオープンカラムに、SDS で

図4. カラムクロマトグラフィーによるCNTの分離. (a) ア ガロースゲルを用いた金属型・半導体型CNT分離. (b) デキ ストラン系ゲルを用いたオーバーロードによる単一構造半導 体型CNT分離と得られた単一構造半導体型CNT分散液.

分散したCNTを注入すると、金属型CNTがフロースルー 液として回収され、半導体型CNTはゲルに吸着する. その後、半導体型CNTはデオキシコール酸ナトリウム (DOC) など別の界面活性剤で溶出して回収される(図 4a)⁷⁾. 一般に、クロマトグラフィーは分析だけでなく 製造プロセスにも実用されている手法であり、スケール アップやポンプ送液による高速化と自動化などによる、 スループットの向上や低コスト化に適した手法である. 実際に、直径20 cmで容量約9Lのパイロットスケール のカラムを用いた際には、日産2gのスループットで金 属型と半導体型のCNTの大量分離が可能である(2g/日 を少ないと感じられるかもしれないが、組換えタンパク 質を2g精製する大変さと同様のイメージをしていただ きたい).

Sephacrylゲルを用いたカラム分離では様子が少々異 なり、特に、少量のゲルに対して吸着容量の数10倍程 度の大過剰のCNTを投入(オーバーロード)すると, 特定の単一構造の半導体型CNTがゲル吸着成分として 得られることが分かった⁸⁾. これは, 吸着力のもっとも 大きいCNTが競合的に吸着した結果である. さらに複 数のカラムを直列に配置しオーバーロードすると、複数 種の単一構造の半導体型CNTが同時に得られる(図 4b). 半導体型CNTも単一構造にまで精製されると, 黄,紫,青,青緑,緑と鮮やかな色を呈する.最近では、 SDS/SC/DOCの三種の混合界面活性剤系でDOCの濃度 のみを段階的に上げていく溶出法により、より再現性や 制御性の高い分離が実現されている⁹⁾. さらに、DOC 濃度を0.005%刻みで変化させる非常に細かい段階溶出 を行うことによって、単一構造の半導体型CNTのエナ ンチオマー分離に成功した¹⁰⁾. 12種類のエナンチオマー が得られており、既存の手法と比較しても、高いエナン チオマー純度が得られる手法となっている. 光学活性を 持たないSDSのみを用いたオーバーロード法でもCNT のエナンチオマーの分離がある程度起こることがわかっ ているため、エナンチオマーの認識は光学活性を持つデ キストラン(カラム担体)が担っているものと考えられ る.ただし、上述のようにSCとDOCの共存下では、 より高純度のものが得られていることから、これら光学 活性な分散剤もエナンチオマー分離において重要な働き をしていると予想される.

一方, Zhengらは, DNAがCNTの分散剤として機能 することを見いだし, DNAで分散したCNTをイオン交 換クロマトグラフィーで分離した.本法では, DNAの 塩基部分が疎水基として働き, リン酸エステル結合部が 親水基として働くと考えられる.シトシンまたはチミン

をランダムに含む一本鎖オリゴDNA(60 mer)を用い てCNTを分散し、陰イオン交換カラムにかけることで、 純度が低いながらも金属型と半導体型のCNTの分離に 成功したのが2003年のことである11). その後, 同グルー プは約350種類のさまざまな配列(長さが10~30 merで、 2~4塩基の繰り返し配列)の一本鎖オリゴDNAを検 討し、特定のDNAで特定の単一構造のCNTを分離す ることに成功した¹²⁾.本分離では、カラム担体に吸着し たCNTは塩のグラジエントで溶出されるが、目的の CNT/DNA 複合体が他のCNTよりも早く溶出されるた め、CNTを分離することが可能である.この現象は、 特定の構造のCNTには特定のDNAが規則正しく巻き 付き、CNTの表面が均質に負電荷を帯びるのに対し、 他のCNTにはDNAがランダムに張り付くことでCNT の表面が一部むき出しになり、その部分がゲルのイオン 交換基以外の部分と相互作用して溶出が遅れることに起 因すると考察されている.本法は、らせん構造を持つ CNTの分離に、DNAのらせん度と配列の多様性を巧み に利用したものであり、10種類を超える単一構造半導 体CNTの分離を報告した初めてのものである.

水性二相分離

水と油が混和せず二相に分かれるように,特定の2種 類の高分子を含む水溶液はある条件で互いに水溶液であ りながら二相に分かれる.この二つの相への溶質の分配 を利用して分離を行うのが,水性二相分離法である.バ イオテクノロジーの分野では,タンパク質や細胞小器官, 細胞の分離に使用されている.溶液を混和し,静置する だけという非常に簡単な操作で,短時間のうちに溶液は 上下に相分離する.先述のZhengらのグループは,こ の水性二相分離法をCNTの分離に応用した.

ポリエチレングリコール (PEG) とデキストランを 用いた系では、上相のPEG相に半導体型CNT,下相の デキストラン層に金属型CNTが分離された¹³⁾. CNTの 分散に使用する界面活性剤の種類や濃度により上下相へ のCNTの分配が変化する.また、煩雑な分離操作を必 要としないため、分離操作の繰り返しが容易である.実 際、4、5回分離操作を繰り返すことにより、半導体型 のみならず、金属型の単一構造CNTの分離にも成功し ている¹⁴⁾.さらに最近では、水性二相分離法の分散剤に DNAを適用し、単一構造分離とエナンチオマー分離も 実現している¹⁵⁾.本分離のためにZhengらは改めて300 種以上の一本鎖オリゴDNA(長さが12 merで、2種類 の塩基からなるパリンドローム(回文配列))をスクリー ニングし、最終的に20種類以上の金属型CNTと半導体 型CNTに対する単一構造あるいはエナンチオマーの分離に成功している.

おわりに

生体分子の分離法がCNTに対して有効な理由に,生 体分子もCNTも共に水系で行う分離である,という点 があげられる.生体分子の多くは水溶液中に存在するた め,その構造や機能を保ったまま分離精製するには生体 分子を水溶液中で取り扱うことが基本となる.一方, CNTでは,分離に先立って界面活性剤を用いてCNTを 水溶液中に孤立分散させる必要があるため,その後の分 離も水系で行う必要がある.この水系で分離を行う必要 性という共通性が,CNTの分離に生体分子の分離法が 有効になる理由となっている.また,CNTのサイズが 生体分子のサイズと似通っている点も,ゲルを用いて電 気泳動やクロマトグラフィーで分離するうえで重要な要 因の一つとなっていると考えられる.

CNTの分離における残された課題として,より太い CNTの分離がある.図1からも分かるように,直径が 太くなるにつれて,CNTの取りうる構造の多様性が広 がり,加えて金属型と半導体型CNTの電気的性質の違 いが小さくなってくるため,分離の難度が増す.別の課 題として,ハイスループットで良質の孤立分散液を調製 する手法の確立も重要である.本稿で紹介したCNTの 分離は,いずれも分離に先立つ孤立分散液の調製のため に,超音波照射と超遠心分離の過程を必要とする.前者 はCNTに欠陥を導入して性能を劣化させ,また両者と も大量処理を行ううえでのボトルネックとなっており, これらを解決する必要がある.

本稿の対象外である「生体分子の分離法以外の方法」 を用いたCNTの分離例はあまり多くはないが,ポリフ ルオレンなどの半導体性芳香族性高分子を分散剤に用い て有機溶媒中で半導体型CNTを選択的に抽出する手法 や¹⁶⁾,アルキルアミンを分散剤に用いて有機溶媒中で金 属型CNTを抽出する手法¹⁷⁾などがある.前者では,数 種類にまで絞られた半導体型CNTの混合物や単一構造 の半導体型CNTが得られている.また,合成後の分離 ではなく,単一構造のCNTを選択的に合成することに 成功した報告もあるが^{18,19},量や純度や採算性が十分で ないなど解決すべき課題が存在する.したがって,CNT を産業応用するには,現状では本稿で紹介したような CNTの分離法によって単一構造のCNTを得るほうが現 実的である.

最後に,分離したCNTの活用について触れる.単一 構造半導体型CNTは,近赤外蛍光を利用した血管造影 (本特集,蓬田)⁹⁾や,量子暗号通信の実現に重要な室温 単一光子源²⁰⁾などに利用可能で,CNTのエナンチオマー はCNTのバンド構造解析に利用可能である¹⁰⁾.このよ うに,分離したCNTはこれまで純粋な試料がなかった ために進まなかった基礎研究や応用開発の進展に大いに 貢献している.生体分子の分離法はその縁の下の力持ち として,これからも活躍するに違いない.

謝 辞

本稿で紹介したゲルを用いたCNTの分離に関する研究は, (国研) 産業技術総合研究所の片浦弘道首席研究員をはじめ共 同研究者の方々との成果であり,この場を借りて深謝致しま す.また,日本学術振興会 科学研究費助成事業,および新エ ネルギー・産業技術総合開発機構 (NEDO) 産業技術研究助 成事業などの支援を受けてなされた.

文 献

- 1) Iijima, S.: Nature, 354, 56 (1993).
- 2) O'Connell, M. J. et al.: Science, 297, 593 (2003).
- 3) Arnold, M. S. et al.: Nat. Nanotechnol., 1, 60 (2006).
- 4) Ghosh, S. et al.: Nat. Nanotechnol., 4, 443 (2010).
- 5) Tanaka, T. et al.: Appl. Phys. Express, 1, 114001 (2008).
- 6) Tanaka, T. et al.: Nano Lett., 9, 1497 (2009).
- 7) Tanaka, T. et al.: Appl. Phys. Express, 2, 125002 (2009).
- 8) Liu, H. P. et al.: Nat. Commun., 2, 309 (2011).
- 9) Yomogida, Y. et al.: Nat. Commun., 7, 12056 (2016).
- 10) Wei, X. et al.: Nat. Commun., 7, 12899 (2016).
- 11) Zheng, M. et al.: Nat. Mater., 2, 338 (2003).
- 12) Tu, X. et al.: Nature, 460, 250 (2009).
- 13) Khripin, C. Y. et al.: J. Am. Chem. Soc., 135, 6822 (2013).
- 14) Fagan, J. A. et al.: Adv. Mater., 26, 2800 (2014).
- 15) Ao, G. et al.: J. Am. Chem. Soc., 138, 16677 (2016).
- 16) Nicholas, R. et al.: Nat. Nanotechnol., 2, 640 (2007).
- 17) Maeda, Y. et al.: J. Am. Chem. Soc., 127, 10287 (2005).
- 18) Yang, F. et al.: Nature, 510, 522 (2014).
- 19) Sanchez-Valencia, J. R. et al.: Nature, 512, 61 (2014).
- 20) He, X. et al.: Nat. Photon., 11, 577 (2017).