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Future perspective of biologics production by mammalian cell

Takeshi Omasa'?

'Depertmentof Biotechnology, Graduate School of Engineering, Osaka University

*Manufacturing Technology Association of Biologics

Mammalian cell lines are important host cells for the industrial production of biologics owing to their
capacity for correct folding, assembly, and post-translational modification. Chinese hamster ovary (CHO)
cells are the most dependable host cells for the industrial production of therapeutic antibodies. Growing
demand for therapeutic proteins promotes the development of technologies for high quality and
productivity in CHO production systems including cell engineering and cell culture engineering. The
Chinese hamster ovary cell line was established by Puck in 1957. Nowadays, among the therapeutic
antibodies launched in the EU, USA, and Japanese markets, CHO cells produce about more than 50 % of
these. In this presentation, I will introduce and discuss about the recent development of engineering for

the CHO production system.
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The human protein atlas and engineered affibody molecules

Stefan Stahl* and Mathias Uhlén
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Introduction

The research within the department has over the years
focused on two main areas; (i) to engineer small affinity
proteins to bind any protein, for use in various
applications in biotechnology and medicine, and (ii) a
program with an aim to map all human proteins in
tissues, organs and cells using integration of various
omics technologies, including antibody-based imaging,

transcriptomics and systems biology.

The affibody technology

A unique scaffold protein named affibody (only 58
amino acids in size), was developed in the department
more than 20 years ago, and has over the years been
explored in various applications”, and more than 500
studies have been published.

As the affibodies have been found safe and efficacious
in humans for medical imaging applications, now in
late-stage clinical testing for medical imaging of breast
cancer", the affibodies are currently also being evaluated
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as “next-generation biological drugs”, thus as an alternative
to therapeutic antibodies. Several different concepts are
being explored in preclinical studies in oncology,
typically in bi- or multispecific formats, including pay-
load delivery and prodrug concepts”. Due to their small
size, affibodies are rapidly excreted, and for therapeutic
applications extended circulation times in blood are
required. Thus, another small (5 kDa), scaffold protein,
a high-affinity albumin binding domain (ABD) was
engineered and deimmunized to minimize immunogenicity,
and found safe and suitable to prolong circulation of
pharmaceutical proteins".

In the clinically most advanced study, affibody molecules
specific for IL-17, a well-known driver of psoriasis,
have been formatted into a small dimeric “IL-17 trap”
with sub-picomolar affinity and fused to ABD for
prolonged long plasma half-life. The molecule is now in
phase II clinical development in patients with moderate-
to-severe psoriasis and more than 200 patients have been
treated with excellent clinical effect and no reported
adverse effects. Another example is an affibody molecule
binding the neonatal Fc receptor (FcRn) in a pH-dependent
manner, allowing for endosomal recycling. The concept
has advanced into clinical evaluation for the purpose of
treating autoimmune diseases by depletion of IgG.

The Human Protein Atlas (HPA)

The Human Protein Atlas (HPA) program is an
international effort starting in 2003 (led from KTH),
taking advantage of highly specific polyclonal affibodies
for the mapping of all 20,000 proteins in cells and
tissues of human origin. The current version HPA
program consists of six separate publicly available parts
(www.proteinatlas.org), each focusing on a particular
aspect of the genome-wide analysis of the human proteins,
including a Tissue Atlas showing the distribution of the
proteins across all major cells, tissues and organs in the

AT HE98% BT (2020)

human body”, a Cell Atlas showing the subcellular
localization of proteins in single cells’ and the
Pathology Atlas showing the impact of protein levels on
survival of cancer patients”. In the last year, three new
additions have been launched; a Blood Atlas showing
the proteins across the major immune cells, including
also data regarding the number and concentrations of
human blood proteins”, a Brain Atlas showing the proteins
located to different regions of the human brain as well as
the brains of pig and mouse® and the Metabolic Atlas
with a model of the metabolic enzymes in humans
and their location to different tissues (unpublished).
Considerable efforts have indeed been spent to validate

the antibodies used in the program”.

Conclusions

A majority of the best-selling pharmaceuticals today
are protein drugs, and an increasing number are not
traditional monoclonal antibodies, but rather engineered
derivatives. It is likely that we in the near future will also
see engineered scaffold proteins, such as the affibodies,
among these “next-generation biological drugs”.

The HPA database has more than 300,000 visitors per
month and is one of the most visited biological databases
in the world. More than five peer-reviewed publications
are published in average by external groups every day
and the HPA program has thus so far contributed to
several thousands of publications in the field of human
biology and disease.
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Current status of functional cell design technologies directed
toward therapy and drug discovery

Masahiro Kawahara

Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition

As cancer therapy using chimeric antigen receptor (CAR)-T cells has become practical in recent years,
many researchers now try to investigate approaches aiming at therapeutic applications by creating
functional cells with artificial targeting and reactivity by gene transfer. In addition, drug discovery that
targets intracellular protein-protein interactions attracts much attention, and the development of
functional cells capable of screening various protein-protein interactions in an intracellular environment
has been demanded. In order to create these functional cells, a technique for arbitrarily controlling cell
fates is essential. Therefore, we created artificial receptors in which the ligand-recognition and signaling
properties of the wild-type receptor were designed and modified by genetic engineering. Utilizing such
artificial receptors, we developed a platform technology for arbitrarily controlling cell fate. In this
presentation, part of our technological development is introduced.
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Scaling cell therapy/regenerative medicine, bridging the gap
—Challenges 1n cell product manufacturing—

Takahiro Naka

TerumoBCT Japan. Inc.

Cellular therapies and regenerative medicines have vast potential to treat a multitude of diseases and
conditions and offer the promise to revolutionize medicine. To bring cellular therapies to patients
successfully, cell therapy developers will require a way to easy and cost-effective scale production. It also
will require compliance to regulations, current Good Manufacturing Practices (cGMP), and safeguarding
the quality of the product. The gap between research and development, and commercialization remains
wide and poses one of the biggest challenges for the industry at the moment. Today, we shall discuss

considerations and solutions to bridge the gap.
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