時空間的な制御技術が生み出す細菌挙動解析

高橋 晃平・久能 樹・Andrew S. Utada^{*}

細菌が棲む世界

地球上には、おおよそ1.0 × 10³⁰匹の細菌が存在し、人 の腸内、植物の葉、土壌、海水などさまざまな環境に棲 んでいる¹⁾. このような環境は、慣性力よりも粘性力が 支配していたり、大小さまざまな粒子が存在していたり、 液体の流れがあるなど複雑である.流れ一つを考えても、 栄養供給や物質拡散,剪断力などさまざまな要素があり、 それらがダイナミックに変化することで、環境中の化学・ 物理的因子を支配している²⁾.

このような環境で細菌は、鞭毛・繊毛を駆使して運動 したり、基質表面に付着したりする.また、細菌は単独 で存在しているのではなく、バイオフィルムと呼ばれる 細菌が密になった集団を形成して生存している.現在ま でに、バイオフィルムに関するさまざまな研究が行われ てきたが、「細菌は、実際の環境でどのように集団を形 成し、その中で何をしているのか?」という疑問は未解 明な部分が多い.そこで筆者らは、生物学的アプローチ に捉われず、工学・化学・物理学などさまざまな技術や 論理を駆使し、集団を形成する1細胞の挙動を時空間的 に追跡することで、この根本的な疑問に迫ろうとしてい る.本稿では細菌の観察技術の変遷をたどるとともに、 筆者らが明らかにした細菌の挙動を紹介していく.

図1. 代表的な細菌の観察手法である(A) ガラスボトムディッシュ,(B) フローセル,(C) マイクロ流体デバイス.(上) 実際に顕微鏡に設置した様子,(中) イメージ図,(下) 細菌の生育環境の模式図を示す.

ガラスボトムディッシュ

魚の挙動を調べるなら,魚を「透明な水槽」に入れて 観察する.同様に細菌の挙動もガラスボトムディッシュ などの「透明な水槽」に培養液を入れて顕微鏡観察する (図1A).ガラスボトムディッシュでは細菌を培養させ ながら経時的な観察が可能であるが,細菌の増殖に伴い 栄養は枯渇してしまう.さらに,細菌は三次元的な増殖 するため,底面から集団内の1細胞の挙動を解析するに は限界がある.また,ディッシュ内において,流れなど の環境要素の再現は難しく,細菌が生きている実際の環 境とは異なる.

フローセル

細菌が棲む環境には普遍的に流れがあり,流れは環境 中の化学・物理的因子を支配している.そこで,フロー セルと呼ばれる小型チャンバーを用いて,細菌の観察が 行われてきた(図1B).フローセルはmm単位で構成さ れている流体系であり,接続したチューブを介して培地 を連続的に供給することで,恒常的に流れのある環境を 作り出す.しかも,栄養を枯渇させることなく経時的に 観察することが可能であるため,流れのある実環境に近 い状態でのバイオフィルム形成過程の観察も行われてき た³⁾(次の項目で,筆者らが実際に行った観察例を紹介 する).フローセルは既製品としてさまざまなタイプが 市販され,細菌の挙動を観察する簡便な手段となってい るが,自由に流体系を調整できない難点がある.

高時間分解能解析によるコレラ細菌の挙動

ここでは、フローセルと高速カメラを用いることで、細 菌の基質表面での運動を解析した例を紹介する. 筆者ら は、下痢の原因となる病原性コレラ細菌 Vibrio cholerae のバイオフィルム形成初期段階における1細胞レベルで の挙動を明らかにした⁴⁾. V. cholerae は基質表面で運動 し、やがて不可逆的な付着によってバイオフィルムの形 成を開始する. したがって、基質表面での付着を理解す ることはきわめて重要である. 筆者らは、1秒間に200 回撮影できる高速カメラを用いることで、V. choleraeの

^{*}**著者紹介** 筑波大学生命環境系(准教授) E-mail: utada.andrew.gm@u.tsukuba.ac.jp ERATO野村集団微生物制御プロジェクト デバイス開発・イメージンググループ(グループリーダー) 微生物サステイナビリティ研究センター 次世代微生物制御部門

図2. 基質表面における *V. cholerae*の挙動. (A) 200枚/秒で高速トラッキングした1細胞の運動軌跡. それぞれ (B)「周回運動」と (C)「放浪運動」を示す. (D) 1細胞の回転運動半径 (R_{gyr})の分布. $R_{gyr} < 8$ の「周回運動」, $R_{gyr} > 8$ の「放浪運動」に区別できる. 赤線は R_{gyr} の曲線回帰を示す.

デバイス表面の動きを正確に追跡することを可能にした (図2A). この解析から*V. cholerae*の野生型株は,一定 の領域をクルクルと回る「周回運動 (orbiting)」(図2B) と遠くに離れて行く「放浪運動 (roaming)」(図2C)の 異なる運動パターンの亜集団があった.そこで,これら 運動パターンを定量的に解析するため,以下の数式(1) より,1細胞の運動軌道の広がりを示す R_{gyr} (回転運動 半径)を求めた(図2D).

ここで, N:追跡回数, R_i:任意時間における細菌の 座標, R_{cm}:細菌運動全体の座標の重心とした.

$$R_{\rm gyr}^2 = \frac{1}{N} \sum_{i=1}^{N} (\vec{R}_i - \vec{R}_{cm})^2$$
(1)

その結果、それぞれ $R_{gyr} < 8 \mu m$ のとき「周回運動 (orbiting)」、 $R_{gyr} > 8 \mu m$ のとき「放浪運動(roaming)」 の亜集団に定量的な区別が可能となった.一方、V. choleraeの鞭毛・繊毛欠損株のデバイス表面での運動パ ターンは、このような亜集団に区別されなかった.この ことから、デバイス表面での運動には鞭毛・繊毛の関与 が示唆された.また、数学的なシミュレーションと長期 観察(タイムラプスイメージング)から、「周回運動」 する亜集団では、鞭毛・繊毛によって生じる摩擦力が 「放浪運動」する亜集団よりも大きく、最終的に不可逆 的に付着する可能性が高かった.これらの結果は、基質 表面での運動パターンには鞭毛・繊毛が関係しており、 不可逆的な付着に影響していることを示す.

マイクロ流体デバイス

細菌の棲む90%以上の環境は、土壌・堆積物などの

生物工学 第98卷 第7号 (2020)

多孔質な環境であり、μm単位で区切られた微小空間で 構成されている⁵⁾.近年,マイクロ流体デバイスを用い ることで、制御された微小空間で細菌の挙動を解析する 研究が進んでいる⁶⁻⁸⁾.マイクロ流体デバイスは、µm単 位の空間で構成されている流体系であり、半導体微細加 工技術・精密機械加工技術などを用いて作製されている (図1C). 当初は、液体クロマトグラフィーの微小化・ 高速化などを目的とした研究が主流であったが、近年は 細胞の挙動を観察するための技術として応用されてきて いる. 基盤の設計には, computer-aided design (CAD) などの図面設計ツールを使用することで、複雑な流路を 自由にデザインすることを可能にし、基盤の作製には ICチップを作るソフトフォトレジストの技術が用いら れている.マイクロ流体デバイスは、完成した基盤に polydimethylsiloxane (PDMS) と呼ばれるシリコーン を流し込み硬化させ取り出し、カバーガラスと接着させ ることで完成する. これらの手法から作製されるマイク ロ流体デバイスを用いた細菌観察には、以下の大きなア ドバンテージがある.

①実環境の再現 冒頭でも述べた通り,細菌の棲む空間は、さまざまな形態的な特徴がある.たとえば、多 孔質な空間や凹凸のある表面などがある.このような細 菌が実際に棲んでいるような環境を模倣することを可能 とする^{9,10)}.

②次元圧縮 細菌は三次元的な広がりをもって増殖 するため、集団内の細菌を1細胞レベルで観察するのは 難しい.そこで、細菌を一・二次元的な広がりしかない 空間に制限することで、制限した次元内での細菌の挙動 を観察することを可能とする^{7,11}(次の項目で、筆者らが 実際に行った観察例を紹介する).

③物理・化学的な要因の制御 細菌は物理・化学的 な要因によってさまざまな影響を受ける.たとえば、細 菌には誘引物質の濃度勾配に影響され移動する走化性と いう性質がある.マイクロ流体デバイス内で,誘引物質 とバッファーをデバイス両端から流し濃度勾配を作るこ とで、細菌の生育する空間に誘引物質の濃度勾配を作り、 細菌の走化性を1細胞レベルで解析を可能とする^{12,13)}.

二次元空間による糸状細菌挙動

ここでは、マイクロ流体デバイスを用いて二次元的 な空間に圧縮することで細菌の挙動観察を行った例を紹 介する.筆者らは、糸状細菌 Leptothrix cholodniiがフィ ラメントを形成する過程を明らかにした¹⁴⁾(図3A). L. cholodniiは、鎖状に分裂した細胞フィラメントの周囲に 分泌ナノ繊維から構成される鞘と呼ばれる構造を作り、

図3. 二次元空間でのL. cholodniiの挙動. (A) マイクロ流体デ バイス内に配置した,縦:横:高さ=100 µm:100 µm:1.3 µm の空間を有する 2D-チャンバー. (B) 三次元的な広がりをある 空間におけるL. cholodniiの細胞集団. (C) 2D-チャンバー内で のL. cholodniiの挙動. チャンバー壁に衝突後の(D)「屈曲」,(E) 「反転」による細胞フィラメントの継続的な伸長. 矢印は固定 端(黒),衝突後の固定端(青),伸長端(白)を示す. (F)衝突 角角度と屈曲・反転の関係. 棒グラフは実際の出現頻度,実 線と点線はシミュレーションによる出現頻度を示す.

酸化鉄粒子に覆われたマイクロチューブを形成する¹⁵⁾. しかしながら、チューブ同士が絡まった三次元構造を作 るため(図3A)、細胞フィラメントの1細胞の挙動や分 泌ナノ繊維の空間分布の観察は困難であった. そこで, 高さを1.3 μmに制限した2D-チャンバーを持つマイク ロ流体デバイス用いることで、L. cholodniiのフィラメン ト形成過程のリアルタイムな観察を可能にした(図3B. C).野生型株は、デバイス表面に付着後に細胞フィラ メント形成する一方,ナノ繊維非分泌株は表面に付着で きず,フィラメントを伸長しなかった.このことから, ナノ繊維を介した表面付着が細胞フィラメントの伸長の 鍵であることが分かった. さらに、細胞フィラメントは チャンバー壁など障害物に衝突しても,「屈曲 (bending)」または「反転 (reversal)」して伸長を継続し た(図3D, E). 数学的なシミュレーションの結果, こ の異なる現象は衝突時に発生する反発力を受ける角度に よって起こることが示唆された(図3F). これらの結果

は, *L. cholodnii*は狭い空間内でも継続的にフィラメン トを形成する能力を有することを示している.

まとめと今後の展望

本稿では、これまでの細菌の挙動を観察する手法の変 遷をたどるとともに、高時間分解能解析によるコレラ細 菌の挙動および二次元空間による糸状細菌の挙動を紹介 した.細菌の挙動を観察するには、物理・化学的な要因 の制御や適切な時間・空間で解析することが重要である. これらの制御が可能なマイクロ流体デバイスは、大きな ブレークスルーを生み出し、研究を進展させることが期 待される. 今後の筆者らの研究でも、マイクロ流体デバ イスを駆使して、細菌の挙動をより詳細に明らかにして いく.

謝 辞

本研究は、文部科学省の科学研究費補助金若手研究 (B) (17K15410)、科学技術振興機構 ERATO野村集団微生物制御 プロジェクト (JPMJER1502)の一環として行われたものです. また、多くの共同研究者の方々に感謝申し上げます.

文 献

- Flemming, H. C. and Wuertz, S.: Nat. Rev. Microbiol., 17, 247 (2019).
- 2) Persat, A. et al.: Cell, 161, 988 (2015).
- 3) Foster, J. S. and Kolenbrander, P. E.: *Appl. Environ. Microbiol.*, **70**, 4340 (2004).
- 4) Utada, A. S. et al.: Nat. Commun., 5, 4913 (2014).
- 5) Raynaud, X. and Nunan, N.: PLoS One, 9, e87217 (2014).
- Volfson, D. et al.: Proc. Natl. Acad. Sci. USA, 105, 15346 (2008).
- 7) Liu, J. et al.: Nature, 523, 550 (2015).
- 8) Sanfilippo, J. E. et al.: Nat. Microbiol., 4, 1274 (2019).
- Drescher, K. et al.: Proc. Natl. Acad. Sci. USA, 110, 4345 (2013).
- Coyte, K. Z. et al.: Proc. Natl. Acad. Sci. USA, 114, E161 (2017).
- 11) Balaban, N. Q. et al.: Science (80-.), 305, 1622 (2004).
- 12) Yawata, Y. et al.: Proc. Natl. Acad. Sci. USA, 111, 5622 (2014).
- 13) Salek, M. M. et al.: Nat. Commun., 10, 1877 (2019).
- 14) Kunoh, T. et al.: ACS Nano, 14, 5288 (2020).
- 15) Emerson D. *et al.*: *Appl. Environ. Microbiol.*, **58**, 4001 (1992).